kdb Products
Overview
KDB.AI
kdb+
kdb Insights
kdb Insights Enterprise
Capabilities
The Data Timehouse
Vector Database Explained
kdb+ Time Series Database
PyKX Python Interoperability
Services & Support
Financial Services
Quant Research
Trading Analytics
Industry & IoT
Automotive
Energy & Utilities
Healthcare & Life Sciences
Manufacturing
Telco
Learn
Overview
Featured Courses
KX Academy
KX University Partnerships
Connect
KX Community
Community Events
Developer Blog
Build
Download
Documentation
Support
About Us
Partner with Us
Become a Partner
Find a Partner
Partner Signup
Join Us
Connect with Us
Machine learning with kdb+ has been a theme of the KX blog over the past couple of months because of the release of a series of JupyterQ notebooks on the KX ML GitHub. As more different kinds of developers work with ML techniques, the uses for kdb+ in ML applications is growing. The release of embedPy, which loads Python into kdb+, so Python variables and objects become q variables and either language can act upon them, has been a catalyst for this trend. With embedPy, Python code and files can be embedded within q code, and Python functions can be called as q functions.
Building on these capabilities, the KX ML team has created a number of JupyterQ notebooks, and continues to develop more. Each notebook demonstrates how to implement different machine learning techniques in kdb+, primarily using embedPy, to solve all kinds of machine learning problems from feature extraction to fitting and testing a model. These notebooks act as a foundation to our users, allowing them to manipulate the code and get access to the exciting world of machine learning within KX.
Our current list of ML notebooks are described in the following KX blogs:
If you would like to further investigate the uses of embedPy and machine learning algorithms in KX, keep checking back to the ML notebooks on GitHub. You can use Anaconda to integrate into your Python installation to set up your machine learning environment, or you can build your own, which consists of downloading kdb+, embedPy and JupyterQ. You can find the installation steps on the ML section of the kdb+ Developers’ site.