Unlock new capabilities with KDB.AI 1.4

作者

Michael Ryaboy

Developer Advocate

KDB.AI 1.4 has just been released, unlocking new capabilities to streamline workflows, boost performance, and open new possibilities for integrating data. In this release, we aim to make KDB.AI even easier to use and more adaptable to the growing demands of diverse applications.

Let’s explore.

Database layer support

To improve data management, KDB.AI 1.4 introduces a new database layer above tables, allowing for better organization and management.

Python
schema = [
    {"name": "id", "type": "str"},
    {"name": "vectors", "type": "float64s"}
]

indexes = [
    {
        "name": "vectorIndex", "type": "flat",
        "params": {"dims": 384, "metric": "CS"},
        "column": "vectors"
    }
]

table = database.create_table("my_table", schema=schema, indexes=indexes)

Each database can support multiple tables, each with multiple indexes. This helps reduce redundancy and simplifies the management of large datasets in enterprise environments.

Multiple index support

For users with diverse datasets, KDB.AI 1.4 introduces enhanced multi-index support:

  • You can now create and manage multiple indexes on a single table, allowing for more flexible and efficient querying strategies
  • You can now execute searches across different indexes simultaneously, enabling more comprehensive and nuanced query results. This is especially beneficial for multimodal datasets, such as images and text. For example, users can search using both an image embedding and a text embedding and then re-rank results accordingly
Python
# Multi-Index Search for both texts and images
results = table.search(
    vectors={
        "text_index_qFlat": query_vector,
        "image_index_qFlat": query_vector
    },
    index_params={
        "text_index_qFlat": {'weight': 0.5},
        "image_index_qFlat": {'weight': 0.5}
    },
    n=2
)[0]

Additionally, indexes can have different dimensions, allowing users to experiment with multiple indices and re-rank results based on dimension. This can significantly enhance your ability to conduct complex searches for more accurate results.

With hybrid search, developers can explicitly define separate indexes: one dense for semantic similarity and another sparse for keyword search. This was possible in previous versions, but with KDB.AI 1.4, we have introduced greater control over indexes and more granular weighting for fine-tuned ranking based on the importance of different data aspects.

kdb+ integration

KDB.AI 1.4 also strengthens integration with kdb+

  • Direct table access: Enables users to reference and query kdb+ tables directly from KDB.AI, allowing for seamless similarity searches without needing to move data between systems. This helps maintain data integrity while using KDB.AI ‘s advanced search capabilities
  • TSS searches on kdb+ tables: Support for running Time Series Similarity (TSS) searches on kdb+ tables extends powerful time series analysis capabilities to your existing kdb+ data, enabling better decision-making in financial and IoT applications
  • Index creation on kdb+ data: Create indexes on kdb+ table data within KDB.AI, optimizing vector searches without modifying the original tables. This feature enhances search performance without compromising your existing data structures

New q API

We’ve also introduced a fully documented public q API for KDB.AI server that allows q developers to leverage KDB.AI ‘s capabilities directly within their q environment. This provides a seamless integration path for organizations heavily invested in q, reducing friction and providing a consistent toolset for developing advanced applications.

Enhanced REST API

The REST API has also been improved for a better developer experience:

  • Improved adherence to RESTful conventions makes the API more intuitive and easier to work with
  • More consistent error handling and response codes improve debugging and error management in applications using the API

Version information

Finally, we have included the ability to retrieve information on the KDB.AI server version to aid in compatibility checking and troubleshooting. This helps manage deployments and ensures consistency across environments.

To learn more, check out our latest documentation on code.kx, or view our migration guide on GitHub.

AIによるイノベーションを加速する、KXのデモをお客様に合わせてご提供します。

当社のチームが以下の実現をサポートします:

  • ストリーミング、リアルタイム、および過去データに最適化された設計
  • エンタープライズ向けのスケーラビリティ、耐障害性、統合性、そして高度な分析機能
  • 幅広い開発言語との統合に対応する充実したツール群

専門担当者によるデモをリクエスト

*」は必須フィールドを示します

本フォームを送信いただくと、KXの製品・サービス、お知らせ、イベントに関する営業・マーケティング情報をお受け取りいただけます。プライバシーポリシーからお手続きいただくことで購読解除も可能です。当社の個人情報の収集・使用に関する詳しい情報については、プライバシーポリシーをご覧ください。

このフィールドは入力チェック用です。変更しないでください。