Build, analyze, and innovate on the next generation of kdb+

KDB-X webinar recap: Build, analyze, and innovate on the next generation of kdb+

作者

KX

Thank you to everyone who joined our recent webinar, ‘KDB-X: Build, analyze, and innovate on the next generation of kdb+’. The session brought together leaders from the KX Product team, including Manish Devgan, Connor Gergin, and Aldred Coetzee, to walk through the evolution of KDB-X, explore the GA release, and demonstrate how developers, quants, and data engineers can begin building with the new platform today.

If you missed the live session or want to revisit any part of the discussion, you can watch the full recording below (or download the presentation slides here).

5 Key Takeaways

1. KDB-X is the next major leap in a 30-year technical lineage

Manish opened the session with the story of how KX evolved from the original K and kdb,  to kdb+ and now KDB-X. Each era shaped by new demands in real-time analytics, scale, and now AI-driven workloads. KDB-X extends the proven kdb+ engine into an AI-native platform that unifies streaming, historical, vector search, and open-format interoperability in one environment .

It retains full backward compatibility with existing q/kdb+ code while introducing new capabilities that weren’t possible before, including modules, open format access, and native Python/SQL integration.

2. A unified programming model powered by q, now extensible for modern teams

A central theme was KDB-X’s unified programming model, built on q’s vector-based execution engine. Unlike specialized databases that require separate systems for streaming, SQL, and vector workloads, KDB-X provides one runtime for all real-time data operations .

A major part of the GA release is the new module system, which brings modern software-engineering practices to q:

  • namespacing and isolation
  • composability
  • cleaner imports (use)
  • standardized packaging

This makes it far easier to share, reuse, and maintain code across teams — and sets the foundation for module repositories, versioning, and dependency management coming in future releases.

3. Native support for open formats, including Parquet, unlocks the road to the lakehouse

Connor walked through how teams can now query Parquet datasets directly from KDB-X using virtual tables, without conversion or backfill. This enables:

  • immediate access to existing lakehouse datasets
  • seamless qSQL queries over Parquet partitions
  • partition pruning, column projection, and MapReduce execution patterns
  • easy exploration of large vendor or internal datasets before engineering integration

Connor showed real benchmark comparisons between Parquet and native kdb+ formats, demonstrating how developers can evaluate performance tradeoffs and integration paths themselves .

This capability lays the groundwork for upcoming support for Iceberg-style table formats and deeper object storage integration.

4. AI-native workflows with the KDB-X MCP Server and built-in AI libraries

Aldred introduced the KDB-X MCP Server, an open-source, extensible foundation for connecting LLMs and agentic workflows directly to KDB-X with full governance.

The demo showed how analysts can use natural language to:

  • run SQL queries through AI-assisted tooling
  • perform vector and hybrid similarity search using KDB-X’s AI libraries
  • analyze structured + unstructured CRM data
  • generate summaries, investigations, and portfolio reports automatically

Behind the scenes, the MCP Server handles connection management, tool execution, resources, and prompting — letting developers extend or tailor workflows using templates for tools, resources, and prompts .

This positions KDB-X as a core engine for real-time, agent-driven analytics and RAG systems.

5. A transparent roadmap focused on extensibility, interoperability, AI services, and developer experience

The session closed with a look at the public roadmap, now published on the KX Developer Center. Highlights include:

  • Extensibility: module versioning, dependency management, and a central registry for publishing and discovering modules.
    Interoperability: expanded Parquet integration, deeper object storage capabilities, and future support for Iceberg-style open table formats.
  • Dev Experience: improved debugging, profiling, linting, and modernized developer workflows.
  • Data & AI Services: GPU-accelerated KDB-X, a Vector DB service, and a unified DB Services layer for real-time and historical workloads under a single interface .

The roadmap reflects ongoing collaboration with users and the broader community.

Start Building with KDB-X Today

Whether you’re exploring new datasets, building analytics workflows, or developing AI-powered applications, KDB-X is ready to support your next project. The Community Edition is completely free, including for commercial and offline use, and installation takes just minutes.

Visit the KX Developer Center to download KDB-X, access tutorials, read the documentation, and join the community. 

 

Customer Stories

Discover richer, actionable insights for faster, better informed decision making

資本市場

AxiはKXを使用して、ストリーミング・データをリアルタイムかつ大規模に取り込み、分析し、可視化しています。

詳細を読む 概要 Axi
資本市場

ADSSはKXリアルタイムデータプラットフォームを活用し、変革的成長戦略を加速させます。

詳細を読む 概要 ADSS
資本市場

10年以上にわたってKXの顧客である同社は、KXのチームとリアルタイムデータベースを信頼し、技術的な観点からクラウドへの移行を容易にできる確信がありました。

詳細を読む 概要 日本の投資銀行


AIによるイノベーションを加速する、KXのデモをお客様に合わせてご提供します。

当社のチームが以下の実現をサポートします:

  • ストリーミング、リアルタイム、および過去データに最適化された設計
  • エンタープライズ向けのスケーラビリティ、耐障害性、統合性、そして高度な分析機能
  • 幅広い開発言語との統合に対応する充実したツール群

専門担当者によるデモをリクエスト

*」は必須フィールドを示します

このフィールドは入力チェック用です。変更しないでください。

本フォームを送信いただくと、KXの製品・サービス、お知らせ、イベントに関する営業・マーケティング情報をお受け取りいただけます。プライバシーポリシーからお手続きいただくことで購読解除も可能です。当社の個人情報の収集・使用に関する詳しい情報については、プライバシーポリシーをご覧ください。

タイムシリーズ分野におけるG2認定リーダー

// social // social