Signal processing in kdb+

Signal processing with kdb+

6 Sep 2018 | , ,
Share on:

In the latest in our ongoing series of kdb+ technical white papers published on the Kx Developer’s site, Kx engineer Callum Biggs examines how kdb+/q can be used instead of popular software-based signal processing solutions. Signal processing is used for analyzing observable events, such as IoT sensor data, sounds, images and other types of pulses or occurrences.

Callum’s paper explores how statistical signal processing operations (those which assume that signals are stochastic), can be implemented natively within q to remove noise, extract useful information, and quickly identify anomalies. This integration allows for kdb+/q to be used as a single platform for the capture, processing, analysis and storage of large volumes of sensor data.

This paper shows that native applications of signal processing, which historically have been the realm of libraries accessed through Python or C++, can be natively integrated into kdb+ data systems.

You can read the full paper here.

SUGGESTED ARTICLES

cryptocurrency microstructure with kdb+

Combining high-frequency cryptocurrency venue data using kdb+

19 Sep 2018 | , , , ,

By Eduard Silantyev   Eduard Silantyev is an electronic trading systems developer and a cryptocurrency market microstructure specialist based in London. Follow Eduard on LinkedIn or Medium to read more of his blogs about cryptocurrencies. The original title of this blog is “Cryptocurrency Market Microstructure Data Collection Using CryptoFeed, Arctic, kdb+ and AWS EC2 | Handling […]

Python vs kdb+ for data analytics

A comparison of Python and q for data analysis

21 Aug 2018 | , , , ,

Guest blogger Ferenc Bodon illustrates using Python, SQL and kdb+ for data analytics in this blog. He takes an example that goes just one step beyond the simplest use cases by performing some aggregation based on multiple columns. Anybody who analyzes data tables will bump into this type of problem, probably on the third day.