Using q in Machine Learning with Neural Network and Clustering Examples

4 Apr 2017 | , , , , ,
Share on:

 

Expert kdb+ programmer, and algorithmic quantitative analyst, Mark Lefevre, who is based in Tokyo, recently gave a couple of talks about using high-performance machine learning with kdb+ at the Kx Community Tokyo Meetup.

His first talk was called  “Using Q to Read Japanese.” It focused on utilizing neural networks and how supervised learning can be used in q to teach a machine to recognize Japanese characters from handwritten images. Neural networks are used in a variety of real-world applications including character recognition, object recognition, image compression, asset path prediction, medicine and self-driving vehicles.

Here is Mark’s presentation onUsing Q to Read Japanese:”  Machine Learning in q

His second and most recent talk, “Kx for Wine Tasting,”  focused on utilizing the k-means clustering algorithm and how unsupervised learning can be used in q to teach a machine to appreciate, well, at least recognize, different types of wine! K-means clustering enjoys broad applications in computer vision, vector quantization, marketing, finance and as a pre-processing step for subsequent machine learning algorithms.

Here is Mark’s presentation on “Kx for Wine Tasting: Kx for Wine Tasting

© 2017 Kx Systems
Kx® and kdb+ are registered trademarks of Kx Systems, Inc., a subsidiary of First Derivatives plc.

SUGGESTED ARTICLES

kdb+ for sensor analytics

Kx Insights: Benefits of Utility Predictive Maintenance Analytics

17 Oct 2017 | , , ,

Utilities are going through significant modernization, with the adoption of smart grid technologies such as advanced metering, advanced distribution management, outage management, customer engagement and analytics. This modernization is creating a wealth of diverse data about assets, operations, and customers. At the same time the job of utilities is becoming more challenging with pressure to reduce costs, competition from new forms of technologies and energy providers as well as the need to integrate renewable energy resources. These new challenges, competition and pressures are leading to innovation and transformation in the utilities industry.

Satellite Earth Observation Data with kdb+

Kx for Earth Observation and Astronomy Big Data challenges

11 Oct 2017 | , , , ,

The aerospace industry is increasingly becoming aligned with companies that can take advantage of high-value geospatial and global Earth observation data. In the current era of Big Data and IoT analytics, businesses in industries ranging from energy to civil engineering to facilities management that can commercially exploit non-traditional sources of data, such as data from satellites, can gain a critical edge. Kx technology has already been adopted in a number of such initiatives.

Kdb+ Mastermind Challenge

Kdb+ Mastermind Challenge

4 Oct 2017 | , , , , ,

The Kx Community NYC Meetup recently competed in a Mastermind coding competition moderated by expert kdb+ programmer Nick Psaris, author of the book “Q Tips: Fast, Scalable and Maintainable Kdb+.” The top four solutions were notable for the completely different approaches they took. Mastermind is a popular code-breaking game introduced in 1975 that pits a “codemaker” against a “codebreaker.” The “code,” represented by four pegs chosen from a universe of 6 colors, is picked by the “codemaker.” The “codebreaker” continually makes 4-peg guesses and is told by the “codemaker” how many are the correct color in the correct position, and how many are the correct color in the wrong position.