Real-time Insights and Decision Making with Fast, Big Data

9 Nov 2016 | , , ,
Share on:

By Dave Thomas

Businesses are processing exponentially more data from clicks, swipes, micropayments, cyber packets, social feeds and meter readings today. The financial services industry has been doing this on a large scale for the past two decades.

FIS has coped with steadily increasing data volumes by using a simple scalable data architecture composed of a real-time database (RDB) and a historical database (HDB). One of the major benefits of this architecture is that it is easy to scale up or out simply by adding additional RDBs and HDBs.

The in-memory RDB addresses real-time business needs while the HDB is an immutable record of all past transactions. By querying both the RDB and the HDB one can always get a consistent view of the world and the state of the business. Increasingly, RDBs are being placed in huge non-volatile memory and HDBs are being stored on fast SSDs. Working smartly with today’s memory solutions enables businesses to query all their data in near real-time providing a consistent picture directly assembled from the raw transactional data as required.

This widely used RDB/HDB architecture has lately been re-discovered by the Big Data community. Variations on the model have been described as Lambda Architecture, Gartner’s Hybrid Transaction/Analytical Processing (HTAP) and Forrester’s Translytical DB and Event Sourcing.

Download this full report to read more about Gartner research on HTAP and a cybersecurity use case where we use Kx technology with the best practice data architecture design.

SUGGESTED ARTICLES