Comparing and Contrasting Kx and the Hadoop Ecosystem

1 Nov 2016 | , , , , ,
Share on:

“Through 2018, 70% of Hadoop deployments will fail to meet cost savings and revenue generation objectives due to skills and integration challenges.”

Gartner, 100 Data and Analytics Predictions Through 2020

 

 

By Glenn Wright

The exponential increase in available digitized data, or Big Data, is transforming business and research. The appreciation of the potential of Big Data to change how companies operate has tracked the rise of the Apache Hadoop ecosystem, which includes open-source computing frameworks for working with large datasets.

Over the past two decades companies in the financial services industry working with extremely large datasets have turned to the Kx platform, a high-performance time-series database called kdb+ with a built-in programming language called q for high performance analytics. Kx predates the Apache Hadoop ecosystem by decades, and Kx is proven to be more performant, especially as data volumes increase.

In my latest whitepaper I discuss of some of the differences between the two approaches for tackling large-scale, complex business analytics. I highlight the advantages of both systems and inspect some of the key architectural differences between the two. While both approaches have merits, it is only when you are required to deploy the tools for complex analytics that the true merits of the Kx approach can be fully realized.

© 2017 Kx Systems
Kx® and kdb+ are registered trademarks of Kx Systems, Inc., a subsidiary of First Derivatives plc.

SUGGESTED ARTICLES

Kx collaborating with Fintech startup chartiq

Collaboration: The Dominant Trend in Finance

13 Dec 2017 | , , , ,

In December we are re-blogging some of our favorite content from Kx partners and affiliated companies, starting with this article on the ChartIQ blog. ChartIQ is an agile FinTech company that sells an advanced HTML5 charting library used in technical data analysis, trading configurations and for charting in the capital markets industry. Kx offers a ChartIQ integration as an addition to our Dashboards. In Collaboration: The Dominant Trend in Finance, ChartIQ’s Hanni Chehak writes about the rise of FinTech companies, and the role collaboration plays as FinTech companies are increasingly disrupting the traditional banking sector.

Water system workers with kdb+ historical database

Kdb+ Use Case: Machine Learning Water System Maintenance Application

6 Dec 2017 | , , , ,

Kdb+ is being used much more widely in machine learning applications today. Its ability to quickly ingest and process data, particularly large, fragmented datasets, is one way that developers are adding kdb+ to their technology stack of artificial intelligence and machine learning tools.
For Australian kdb+ developer Sherief Khorshid, who also develops machine learning systems, incorporating kdb+ into a predictive maintenance application gave him the edge in a hackathon win that landed him a cash prize and a contract with the Water Corporation of Western Australia.

kdb+ FFI

Kdb+ FFI: Access external libraries more easily from q

22 Nov 2017 | , , ,

Following on from the hugely popular Python library and interface embedPy and PyQ, Kx has released an FFI as part of the Fusion for kdb+ interfaces. As with embedPy and PyQ, this FFI is open-sourced under the Apache 2 license.
The kdb+ FFI is a foreign function interface library for loading and calling dynamic libraries from q code. It has been adapted and expanded upon from a library originally written by Alex Belopolsky of Enlightenment Research. With the kdb+ FFI you can now call your favorite C/C++ libraries directly from q without the overhead of having to compile shared objects and load into q using the 2: command.